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Abstract. In this paper we extend some results in [5] to the setting of func-

tional inequalities when the standard assumptions of convexity and lower semi-

continuity of the involved mappings are absent. This extension is achieved un-
der certain condition relative to the second conjugate of the involved functions.

The main result of this paper, Theorem 1, is applied to derive some subdiffer-

ential calculus rules, different generalizations of Farkas lemma for nonconvex
systems, as well as some optimality conditions and duality theory for infinite

nonconvex optimization problems. Several examples are given to illustrate the

significance of the main results and also to point out the potential of their
applications to get various extensions of Farkas-type results and to the study

of other classes of problems such as variational inequalities and equilibrium

models.

1. Introduction

Given two convex lower semicontinuous extended real-valued functions F and
h, defined on locally convex spaces, we provided in [5] a dual transcription of the
functional inequality

(∗) F (0, ·) ≥ h(·),

in terms of the Legendre-Fenchel conjugates of F and h, and applied this result to
convex subdifferential calculus, subgradients-based optimality conditions, Farkas-
type results, and, in the optimization field, to linear, convex, semi-definite, and DC
problems. The main feature of our approach there was the absence of the so-called
topological constraint qualifications and closedness conditions in the hypotheses.

In many situations the well-known constraint qualifications (CQ), as general-
ized Slater-type/interior-type, Mangasarian-Fromovitz CQ, Robinson-type CQ, or
Attouch-Brezis CQ, fail to hold. This is the case in many classes of scalarized
forms of (convex) vector optimization problems, in semi-definite programs, bilevel
programming problems (see, e.g., [3], [6], [34], etc.). Because of that, in the last
decades many efforts were devoted to establish mathematical tools for such classes
of problems (e.g., [1], [2], [5], [6], [8], [20], [22], [25], [29], [30], [33], etc.).

Nowadays, in science and technology there is a huge number of practical problems
that can be modelled as nonconvex optimization problems (see [14], [15], [24], and
references therein).
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In the present paper, we go a step further than what is done in [5] by relaxing
the convexity and the lower semicontinuity on the function F in the left hand side
of (∗). Doing so, we use convex tools for nonconvex problems: a tendency whose
importance increases nowadays. Even more, we characterize in Theorem 1 the class
of functions F for which the dual transcription of (∗) obtained in [5] does work. We
show that the class of such functions F goes far beyond the usual one of convex
and lower semicontinuous extended real valued mappings. In fact, this extension is
achieved under certain condition relative to the second Legendre-Fenchel conjugates
of the mappings F and F (0, ·). A dual geometrical description of this property is
given in Proposition 3.

As consequences of Theorem 1, we obtain extensions of the basic convex subd-
ifferential calculus formulas for non necessarily convex functions (Theorem 2 and
Proposition 2), Farkas-type results for nonconvex systems (Propositions 4 and 5),
optimality conditions for non-convex optimization problems (Propositions 6, 7, 9,
and 10), from which we derive the corresponding recent basic results in the convex
setting (Corollaries 1 and 2).

In the same way, we provide duality theorems for nonconvex optimization prob-
lems (Proposition 8, Corollary 3) that cover some recent results in the convex case
(Corollary 4).

The results presented in this paper are new, up the knowledge of the authors, and
they extend in different directions some relevant results in the literature, as [4], [9]-
[13], [16]-[22]. The extensions we propose here are such that typical assumptions as
the convexity and/or lower semicontinuity of the involved functions, the closedness-
type constraint qualifications conditions are absent. Besides this, Examples 1-3, in
Section 3, also show the potential of Theorem 1 to get further generalizations of
Farkas-type theorems and of other results in the field of variational inequalities and
equilibrium problems, always in the absence of convexity, lower semicontinuity and
of any closedness/qualification conditions.

2. Notation and preliminary results

Let X be a locally convex Hausdorff topological vector space (l.c.H.t.v.s.) whose
topological dual is denoted by X∗. The only topology we consider on X∗ is the w∗-
topology.

Given two nonempty sets A and B in X (or in X∗), we define the algebraic sum
by

(2.1) A + B := {a + b | a ∈ A, b ∈ B}, A + ∅ := ∅+ A := ∅,

and we set x + A := {x}+ A.
Through the paper we adopt the rule (+∞)− (+∞) = +∞.
We denote by co A, cone A and clA, or indistinctly by A, the convex hull, the

conical convex hull and the closure of A, respectively.
Given a function h ∈ (R ∪ {+∞})X , its (effective) domain, epigraph, and level

set are respectively defined by

dom h := {x ∈ X : h(x) < +∞},
epih := {(x, α) ∈ X × R : h(x) ≤ α},

[h ≤ α] := {x ∈ X : h(x) ≤ α}.
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The function h ∈ (R ∪ {+∞})X is proper if dom h 6= ∅, it is convex if epih is
convex, and it is lower semicontinuous (lsc, in brief) if epih is closed.

The lower semicontinuous envelope of h is the function h ∈ (R ∪ {±∞})X de-
fined by

h(x) := inf{t : (x, t) ∈ cl(epih)}.
Clearly we have epih = epih, which implies that h is the greatest lsc function
minorizing h; so h ≤ h. If h is convex, then h is also convex, and then h does not
take the value −∞ if and only if h admits a continuous affine minorant.

Given h ∈ (R ∪ {+∞})X , the lsc convex hull of h is the convex lsc function
coh ∈ (R ∪ {±∞})X such that

epi(coh) = co(epi h).

Obviously coh ≤ h ≤ h.
We shall denote by Γ(X) the class of all the proper lsc convex functions on X.

The set Γ(X∗) is defined similarly.
Given h ∈ (R ∪ {+∞})X , the Legendre-Fenchel conjugate of h is the function

h∗ ∈ (R ∪ {±∞})X∗
given by

h∗(x∗) = sup{〈x∗, x〉 − h(x) : x ∈ X}.

The function h∗ is convex and lsc. If dom h = ∅ we have h∗ = {−∞}X (i.e.,
h∗(x∗) = −∞ for all x∗ ∈ X∗). Moreover, h∗ ∈ Γ(X∗) if and only if dom h 6= ∅ and
h admits a continuous affine minorant.

The biconjugate of h is the function h∗∗ ∈ (R ∪ {±∞})X given by

h∗∗(x) := sup{〈x∗, y〉 − h∗(x∗) : x∗ ∈ X∗}.
We have

{h ∈ (R ∪ {+∞})X : h = h∗∗} = Γ(X) ∪ {+∞}X .

Moreover, h∗∗ ≤ coh, and the equality holds if h admits a continuous affine mino-
rant.

The indicator function of A ⊂ X is defined as

iA(x) :=
{

0, if x ∈ A,
+∞, if x ∈ X \A.

If A 6= ∅ the conjugate of iA is the support function of A, i∗A : X∗ → R ∪ {+∞}.
Given a ∈ h−1 (R) and ε ≥ 0, the ε-subdifferential of h at the point a is defined

by
∂εh (a) = {x∗ ∈ X∗ : h (x)− h (a) ≥ 〈x∗, x− a〉 − ε,∀x ∈ X} .

One has

∂εh (a) = [h∗ − 〈·, a〉 ≤ ε− h (a)] = {x∗ ∈ X∗ : h∗ (x∗)− 〈x∗, a〉 ≤ ε− h (a)} .

If a 6∈ h−1 (R), set ∂εh (a) = ∅. If h ∈ (R ∪ {+∞})X is convex, then we have
∂εh(x) 6= ∅ for all ε > 0 if and only if h is lsc at x.

The ε-normal set to a nonempty set A at a point a ∈ A is defined by

Nε (A, a) = ∂εiA (a) .

The Young-Fenchel inequality

f∗ (x∗) ≥ 〈x∗, a〉 − f (a)

always holds. The equality holds if and only if x∗ ∈ ∂f (a) := ∂0f (a) .
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The limit superior when η → 0+ of the family (Aη)η>0 of subsets of a topological
space is defined (in terms of generalized sequences or nets) by

lim sup
η→0+

Aη :=
{

lim
i∈I

ai : ai ∈ Aηi
,∀i ∈ I, and ηi → 0+

}
,

where ηi → 0+ means that (ηi)i∈I → 0 and ηi > 0, ∀i ∈ I.
Let U be another l.c.H.t.v.s. whose topological dual is denoted by U∗, and let

us consider F ∈ Γ (U ×X) . In [5] we established the following result:

Proposition 1. Let F ∈ Γ (U ×X) with {x ∈ X : F (0, x) < +∞} 6= ∅. For any
h ∈ Γ (X) , the following statements are equivalent :
(a) F (0, x) ≥ h (x) , for all x ∈ X.
(b) For every x∗ ∈ dom h∗, there exists a net (u∗i , x

∗
i , εi)

i∈I
⊂ U∗ × X∗ × R such

that
F ∗ (u∗i , x

∗
i ) ≤ h∗ (x∗) + εi, for all i ∈ I,

and
(x∗i , εi) → (x∗, 0+) .

3. Functional inequalities involving non necessarily convex neither
lsc mappings

The following theorem constitutes an extension of Proposition 1 to a function
F which is neither convex nor lower semicontinuous, but under certain specific
requirement to be satisfied by the second conjugate F ∗∗. In fact, it delivers a
characterization of that requirement.

Theorem 1. Let F : U×X → R∪{+∞} such that F (0, ·) is proper and dom F ∗ 6=
∅. Then, the following statements are equivalent :

(a) F ∗∗(0, ·) = (F (0, ·))∗∗.
(b) For any h ∈ Γ(X),

F (0, x) ≥ h(x), ∀x ∈ X ⇐⇒


∀x∗ ∈ dom h∗, there exists a net
(u∗i , x

∗
i , εi)i∈I ⊂ U∗ ×X∗ × R such that

F ∗(u∗i , x
∗
i ) ≤ h∗(x∗) + εi, ∀i ∈ I, and

limi∈I(x∗i , εi) = (x∗, 0+).


Proof. Assume that (a) holds and let h ∈ Γ(X) satisfying F (0, ·) ≥ h. Taking
biconjugates in both sides we get (F (0, ·))∗∗ ≥ h∗∗ = h, and by (a), F ∗∗(0, ·) ≥ h.
Applying Proposition 1 with F ∗∗ ∈ Γ(U ×X) playing the role of F (observe that
{x ∈ X : F ∗∗ (0, x) < +∞} ⊂ dom F (0, ·) 6= ∅), and recalling that F ∗∗∗ = F ∗, we
get the implication [⇒] in (b).

Assume now that, for a given h ∈ Γ(X), the right hand side in the equivalence
(b) holds. Again, by Proposition 1 applied to F ∗∗ we get

F (0, x) ≥ F ∗∗(0, x) ≥ h(x), ∀x ∈ X.

Thus, we have that the converse implication [⇐] in (b) also holds.
Assume now that (b) holds. For any (x∗, r) ∈ X∗ × R such that

(3.1) F (0, ·) ≥ 〈x∗, ·〉 − r,

let us apply (b) with h = 〈x∗, ·〉−r to conclude the existence of a net (u∗i , x
∗
i , εi)i∈I ⊂

U∗ ×X∗ × R such that

F ∗(u∗i , x
∗
i ) ≤ h∗(x∗) + εi = r + εi, ∀i ∈ I,
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and
lim
i∈I

(x∗i , εi) = (x∗, 0+).

Thus we have, for any x ∈ X,

F ∗∗(0, x) ≥ 〈x∗i , x〉 − F ∗(u∗i , x
∗
i ) ≥ 〈x∗i , x〉 − r − εi, ∀i ∈ I,

and, passing to the limit on i ∈ I,

(3.2) F ∗∗(0, ·) ≥ 〈x∗, ·〉 − r.

Since (3.2) holds whenever (x∗, r) satisfies (3.1), we get

F ∗∗(0, ·) ≥ sup {〈x∗, ·〉 − r : (x∗, r) satisfies (3.1)}
= (F (0, ·))∗∗.

Since F ∗∗(0, ·) is convex, lsc, and F ∗∗(0, ·) ≤ F (0, ·), one has always F ∗∗(0, ·) ≤
F (0, ·)∗∗ and, finally, (a) holds. �

As the following examples illustrate, one easily realizes that the class of mappings
F satisfying condition (a) of Theorem 1 goes far beyond Γ(U ×X).

Example 1. Given a proper function f : U → R ∪ {+∞} such that f∗ is proper,
and a linear continuous map A : X → U, whose adjoint operator is denoted by A∗,
let us consider

F (u, x) := f(u + Ax), (u, x) ∈ U ×X.

We thus have

F ∗(u∗, x∗) =
{

f∗(u∗), if A∗u∗ = x∗,
+∞, otherwise, (u∗, x∗) ∈ U∗ ×X∗,

and
F ∗∗(u, x) = f∗∗(u + Ax), (u, x) ∈ U ×X.

Assuming that F (0, ·) ≡ f ◦A is proper, that (dom f∗) ∩ (dom A∗) 6= ∅, and that

(F (0, ·))∗∗ ≡ (f ◦A)∗∗ = f∗∗ ◦A ≡ F ∗∗(0, ·),
we are in position to apply Theorem 1 with f possibly nonconvex. In such a way
we get that for any h ∈ Γ(X),

f ◦A ≥ h ⇐⇒


∀x∗ ∈ dom h∗, there exists a net
(u∗i , εi)i∈I ⊂ U∗ × R such that
f∗(u∗i ) ≤ h∗(x∗) + εi, ∀i ∈ I,
and limi∈I(A∗u∗i , εi) = (x∗, 0+).


The case when A is an homeomorphism (regular) is of particular interest as the

relation (f ◦A)∗∗ = f∗∗ ◦A holds for any function f : U → R ∪ {+∞}. This is the
case when U = X and A is the identity map.

Example 2. Given two proper functions f : X → R ∪ {+∞}, g : U → R ∪ {+∞},
such that f∗ is proper and g(0) = g∗∗(0) = 0, let us set

F (u, x) = f(x) + g(u), (u, x) ∈ U ×X.

One has
F ∗(u∗, x∗) = f∗(x∗) + g∗(u∗), (u∗, x∗) ∈ U∗ ×X∗

and
F ∗∗(u, x) = f∗∗(x) + g∗∗(u), (u, x) ∈ U ×X,
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and so,
(F (0, .))∗∗ = f∗∗(·) + g∗∗(0) = F ∗∗(0, .).

Since f∗ is assume to be proper and g∗∗(0) ∈ R, we have that F ∗ is proper. It
then follows from Theorem 1 that, for any h ∈ Γ(X),

f ≥ h ⇐⇒


∀x∗ ∈ dom h∗, there exists a net
(u∗i , x

∗
i , εi)i∈I ⊂ U∗ ×X∗ × R such that

f∗(x∗i ) + g∗(u∗i ) ≤ h∗(x∗) + εi, ∀i ∈ I,
and limi∈I(x∗i , εi) = (x∗, 0+).


Observe that for g ≡ 0 we get

f ≥ h ⇐⇒


∀x∗ ∈ dom h∗, there exists a net
(x∗i , εi)i∈I ⊂ X∗ × R such that
f∗(x∗i ) ≤ h∗(x∗) + εi, ∀i ∈ I,
and limi∈I(x∗i , εi) = (x∗, 0+).


The equivalence just above is in fact a consequence of h ∈ Γ(X) and that f∗ is

lsc on X∗.

Example 3. Given f : X ×X → R ∪ {+∞}, a : X → R ∪ {+∞}, b ∈ Γ(X), and
K ⊂ X, let us consider the problem

(P ) Find x ∈ K∩dom a∩dom b such that f(x, x)+a(x) ≥ b(x)+a(x)−b(x), ∀x ∈ K.

Problem (P ) extends many generalized equilibrium problems. This is, for instance,
the case in relation to problem (GEP) in [7].

In order to formulate a dual expression for (P ) via Theorem 1, we introduce the
following perturbation function associated with x ∈ K

F (u, x) := fx(x) + (a + iK)(u + x), (u, x) ∈ X ×X,

where fx := f(x, ·). One has

F ∗(u∗, x∗) = (fx)∗(x∗ − u∗) + (a + iK)∗(u∗), (u∗, x∗) ∈ X∗ ×X∗,

and
F ∗∗(u, x) = (fx)∗∗(x) + (a + iK)∗∗(u + x), (u, x) ∈ X ×X.

Let us assume that, for every x ∈ K, the following conditions hold:
(i) (dom f(x, ·)) ∩ (dom a) ∩K 6= ∅, i.e. F (0, ·) is proper;
(ii) dom(fx)∗ 6= ∅ and dom(a + iK)∗ 6= ∅ or equivalently, dom F ∗ 6= ∅;
(iii) (fx)∗∗ + (a + iK)∗∗ = (fx + a + iK)∗∗, i.e. F ∗∗(0, ·) = (F (0, ·))∗∗.
Observe that condition (iii) is satisfied in particular when a ∈ Γ(X), K is a

closed convex set, and f(x, ·) ∈ Γ(X) for all x ∈ K.
If we apply Theorem 1 to problem (P ) we get the following characterization of

its solutions:
x ∈ K is a solution of (P ) if and only if

∀x∗ ∈ dom b∗, there exists a net
(u∗i , x

∗
i , εi)i∈I ⊂ X∗ ×X∗ × R such that

(fx)∗(x∗i − u∗i ) + (a + iK)∗(u∗i ) + a(x) ≤ b∗(x∗) + b(x) + εi, ∀i ∈ I,
and limi∈I(x∗i , εi) = (x∗, 0+).


Example 3 paves the way to apply Theorem 1 to equilibrium problems, and this
will be done in a forthcoming paper.
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A striking application of Theorem 1 is the following formula of subdifferential
calculus that extends [35, Theorem 2.6.3]. Here PX∗ denotes the projection of
U∗ ×X∗ onto X∗.

Theorem 2. For any F : U ×X → R ∪ {+∞} satisfying

(3.3) F ∗∗(0, .) = (F (0, .))∗∗

one has
∂F (0, .)(x) = lim sup

ε→0+

PX∗∂εF (0, x), ∀x ∈ X.

Proof. We begin with the proof of the inclusion “ ⊃ ”. Let x ∈ X and x∗ ∈
lim sup
ε→0+

PX∗∂εF (0, x). Then, there will exist a net (u∗i , x
∗
i , εi)i∈I ⊂ U∗ × X∗ × R

such that

(u∗i , x
∗
i ) ∈ ∂εi

F (0, x),∀i ∈ I, and lim
i∈I

(x∗i , εi) = (x∗, 0+).

We thus have

F (u, x)− F (0, x) ≥ 〈u∗i , u〉+ 〈x∗i , x− x〉 − εi, ∀(i, u, x) ∈ I × U ×X,

and, in particular,

F (0, x)− F (0, x) ≥ 〈x∗i , x− x〉 − εi, ∀(i, x) ∈ I ×X.

Passing to the limit on i for each fixed x ∈ X, we get

F (0, x)− F (0, x) ≥ 〈x∗, x− x〉, ∀x ∈ X,

that is, x∗ ∈ ∂F (0, .)(x).
We prove now the reverse inclusion “ ⊂ ”. Let x ∈ X and x∗ ∈ ∂F (0, .)(x). This

entails F (0, x) ∈ R, F (0, .) is proper, and domF ∗ 6= ∅. The inclusion now readily
follows from Theorem 1 with h ∈ Γ(X) being the affine continuous mapping defined
as follows:

h(x) := 〈x∗, x− x〉+ F (0, x), ∀x ∈ X.

Indeed, since x∗ ∈ ∂F (0, .)(x) we have

F (0, .) ≥ h,

and, by Theorem 1, there exists a net (u∗i , x
∗
i , εi)i∈I ⊂ U∗ ×X∗ × R such that

F ∗(u∗i , x
∗
i ) ≤ 〈x∗, x〉 − F (0, x) + εi, ∀i ∈ I,

and (x∗i , εi) → (x∗, 0+). According to this,

(u∗i , x
∗
i ) ∈ ∂εi

F (0, x), and (x∗i , εi) → (x∗, 0+),

which means
x∗ ∈ lim sup

ε→0+

PX∗∂εF (0, x).

�

From Theorem 2 we obtain the following extension of the Hiriart-Urruty and
Phelps formula [13, Corollary 2.1] and of Theorem 13 in [10]. See also [23, Theorem
4] for another approach of this result.
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Proposition 2. (Subdifferential of the sum) Let f, g : X → R ∪ {+∞} be a
couple of functions satisfying

(3.4) (f + g)∗∗ = f∗∗ + g∗∗.

Then, for any x ∈ X,

∂(f + g)(x) =
⋂
ε>0

cl (∂εf(x) + ∂εg(x)) .

Proof. The inclusion “ ⊃ ” always holds and it is not difficult to be proved. So, we
only have to prove the inclusion “ ⊂ ”. Let x ∈ X and x∗ ∈ ∂(f + g)(x). Setting

F (u, x) := f(u + x) + g(x), (u, x) ∈ X2.

We get

(3.5) F (0, .) = f + g.

Since ∂(f + g)(x) 6= ∅ one has by (3.4)

f∗∗(x) + g∗∗(x) = (f + g)∗∗(x) = f(x) + g(x) ∈ R.

It follows easily that all the functions f∗, g∗, f∗∗, g∗∗ are proper. We have then,
straightforwardly,

(3.6) F ∗(u∗, x∗) = f∗(u∗) + g∗(x∗ − u∗), (u∗, x∗) ∈ (X∗)2,

(3.7) F ∗∗(u, x) = f∗∗(u + x) + g∗∗(x), (u, x) ∈ X2,

and so, by (3.4), (3.5), and (3.7), we have F ∗∗(0, .) = (F (0, .))∗∗. Since x∗ ∈
∂F (0, .)(x), we can thus apply Theorem 2 to conclude the existence of a net
(u∗i , x

∗
i , εi)i∈I ⊂ (X∗)2 × R such that

(3.8) (u∗i , x
∗
i ) ∈ ∂εiF (0, x), and (x∗i , εi) → (x∗, 0+).

By (3.6) and (3.8) one has

[f∗(u∗i ) + f(x)− 〈u∗i , x〉] + [g∗(x∗i − u∗i ) + g(x)− 〈x∗i − u∗i , x〉] ≤ εi, ∀i ∈ I.

Since the the expressions in the two brackets are nonnegative (by Fenchel in-
equality), each of them is less or equal to εi. We thus have u∗i ∈ ∂εif(x), and
x∗i − u∗i ∈ ∂εi

g(x) for all i ∈ I, and so,

x∗ = lim
i∈I

(u∗i + x∗i − u∗i ) ∈ lim sup
ε→0+

(∂εf(x) + ∂εg(x)) =
⋂
ε>0

cl (∂εf(x) + ∂εg(x)) .

�

Remark 1. It is worth observing that if f, g ∈ Γ(X), then

(f + g)∗∗ = f + g = f∗∗ + g∗∗.

Thus, Proposition 2 is a nonconvex version of [13, Corollary 2.1].

We finish this section with a relevant geometrical characterization of condition
(a) in Theorem 1.

Proposition 3. For any F : U ×X → R ∪ {+∞}, the following statements are
equivalent :

(a) F ∗∗(0, ·) = (F (0, ·))∗∗ and it is proper,
(b) ∅ 6= epi(F (0, ·))∗ = cl

⋃
u∗∈U∗

epiF ∗(u∗, ·) 6= X∗ × R.
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Proof. Let us introduce the marginal dual function

γ(x∗) = inf
u∗∈U∗

F ∗(u∗, x∗), x∗ ∈ X∗,

which is convex [35, Theorem 2.1.3(v)]. Denoting by γ the w∗−lsc hull of γ, it is
well-known that

(3.9) epi γ = cl
⋃

u∗∈U∗

epi F ∗(u∗, ·),

and also that [35, Theorem 2.6.1(i)]

(3.10) γ∗ = F ∗∗(0, ·).

Assume that (a) holds. Then, by (3.10) γ∗ is proper and so γ = γ∗∗. Using (3.10)
again, we get from (a)

γ = γ∗∗ = (F (0, ·))∗∗∗ = (F (0, ·))∗,

which yields the properness of (F (0, ·))∗ and, thanks to (3.9) we obtain (b).
Assume now that (b) holds. By (3.9) we conclude that γ = (F (0, ·))∗ and γ is

proper. Since γ = γ∗∗, we have γ∗∗ = (F (0, ·))∗ and hence, γ∗ = γ∗∗∗ = (F (0, ·))∗∗.
Combining this and (3.10), we get (F (0, ·))∗∗ = F ∗∗(0, ·) and the properness of this
function as well. �

Remark 2. It is worth giving here some observations on the assumptions of
Proposition 3.

(i) The statement (a) in Proposition 3 is equivalent to:

(a’) F (0, ·) is proper, dom F ∗ 6= ∅, and F ∗∗(0, ·) = (F (0, ·))∗∗.

(ii) The statement (b) in Proposition 3 holds in particular when F is a proper
convex and lsc function such that 0 ∈ PU (domF ), where PU denotes the projection
of U × X onto U, since in this case F ∗∗(0, ·) = (F (0, ·))∗∗ = F (0, ·) and F (0, ·) is
proper (see [2, Theorem 2]).

4. Generalized Farkas lemma for nonconvex systems

This section is addressed to establish necessary and sufficient conditions for as-
ymptotic versions of Farkas lemma for systems without convexity and lower semi-
continuity.

Given H : dom H ⊂ X → U and g : U → R ∪ {+∞}, we set

(g ◦H)(x) =
{

g(H(x)), if x ∈ dom H,
+∞, if x ∈ X \ dom H.

We consider a cone S ⊂ U (i.e., u ∈ S and α > 0 imply αu ∈ S), whose nonnegative
polar cone is defined by S+:

S+ := {u∗ ∈ U∗ : 〈u∗, u〉 ≥ 0, ∀u ∈ S}.

In contrast with [5], neither lower semicontinuity nor convexity are required for the
mapping u∗ ◦H, with u∗ ∈ S+.

As a consequence of Theorem 1, we get the following versions of the Farkas
lemma for nonconvex systems.
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Proposition 4. (Farkas lemma for nonconvex systems I) Consider f :
X → R ∪ {+∞}, C ⊂ X, H : dom H ⊂ X → U , and S a cone in U . Assume that
the two following conditions hold

(4.1) (dom f) ∩ C ∩H−1(−S) 6= ∅,

∃(u∗0, x∗0, η0) ∈ S+ ×X∗ × R such that(4.2)
f(x) + (u∗0 ◦H)(x) ≥ 〈x∗0, x〉 − η0, ∀x ∈ C.

Then the following statements are equivalent :
(a) (f + iC + i−S ◦H)∗∗ = sup

u∗∈S+
(f + iC + u∗ ◦H)∗∗,

(b) For any h ∈ Γ(X), we have (α) ⇔ (β) where
(α) C ∩H−1(−S) ⊂ [f − h ≥ 0],

and

(β)


∀x∗ ∈ dom h∗, there exists a net
(u∗i , x

∗
i , εi)i∈I ⊂ S+ ×X∗ × R

such that
{

(f + iC + u∗i ◦H)∗(x∗i ) ≤ h∗(x∗) + εi, ∀i ∈ I,
and limi∈I(x∗i , εi) = (x∗, 0+).

Proof. Define g = f + iC and

F (u, x) := g(x) + i−S(H(x) + u), (u, x) ∈ U ×X.

(According to our convention, if x /∈ dom H, i−S(H(x) + u) = +∞, ∀u ∈ U).
Observe that F (0, .) = g + i−S ◦H. Since S is a cone, we get easily

(4.3) F ∗(u∗, x∗) =
{

(g + u∗ ◦H)∗(x∗), if u∗ ∈ S+,
+∞, otherwise,

and so,
F ∗∗(0, ·) = sup

u∗∈S+
(g + u∗ ◦H)∗∗.

By (4.1) F (0, .) is proper. By (4.2) and (4.3) one has dom F ∗ 6= ∅. Thus the
equivalence between (a) and (b) follows directly from Theorem 1. �

Let us now specify a standard situation in which the condition (a) in Proposition
4 is satisfied. To this end one needs the following lemma.

Lemma 1. Assume that the cone S ⊂ U is closed and convex. Then for any map
H : dom H ⊂ X → U one has

i−S ◦H = sup
u∗∈S+

u∗ ◦H.

Proof. We have to prove that for any x ∈ dom H one has

i−S(H(x)) = sup
u∗∈S+

〈u∗,H(x)〉.

If H(x) ∈ −S then the last equality holds trivially since both sides are equal to zero.
If H(x) 6∈ −S, since S is a closed convex cone, the Hahn-Banach theorem yields
the existence of u∗ ∈ S+ such that 〈u∗,H(x)〉 > 0. So, sup

n≥1
〈nu∗,H(x)〉 = +∞, and

we have
i−S(H(x)) = +∞ = sup

u∗∈S+
〈u∗,H(x)〉.

�



FUNCTIONAL INEQUALITIES WITHOUT CONVEXITY AND LOWER SEMICONTINUITY11

Remark 3. From Lemma 1, it easily follows that the condition (a) in Proposition
4 is in particular satisfied whenever S is a closed convex cone and

(f + iC + u∗ ◦H) ∈ Γ(X), ∀u∗ ∈ S+.

Proposition 5 (Farkas lemma for nonconvex systems II). Consider f : X →
R ∪ {+∞}, C ⊂ X, H : dom H ⊂ X → Z, and S a cone in Z. Assume that (4.1)
holds together with

∃ (u∗0, y
∗
0 , t∗0, x

∗
0, η0) ∈ S+ × (X∗)3 × R such that(4.4)

f(y) + (u∗0 ◦H)(x) ≥ 〈y∗0 , y〉+ 〈t∗0, t〉+ 〈x∗0 − y∗0 − t∗0, x〉 − η0,

∀(y, t, x) ∈ X × C × dom H.

Then the following statements are equivalent :
(c) (f + iC + i−S ◦H)∗∗ = f∗∗ + icoC + sup

u∗∈S+
(u∗ ◦H)∗∗,

(d) For any h ∈ Γ(X), one has (γ) ⇔ (δ) where
(γ) C ∩H−1(−S) ⊂ [f − h ≥ 0],

and

(δ)


∀x∗ ∈ dom h∗, there exists a net
(u∗i , y

∗
i , t∗i , x

∗
i , εi)i∈I ⊂ S+ × (X∗)3 × R such that{

f∗(y∗i ) + i∗C(t∗i ) + (u∗i ◦H)∗(x∗i − y∗i − t∗i ) ≤ h∗(x∗) + εi, ∀i ∈ I,
and limi∈I(x∗i , εi) = (x∗, 0+).

Proof. Define now F : U ×X → R ∪ {+∞} with U = Z ×X2 and

F (u, y, t, x) := f(x + y) + iC(x + t) + i−S(H(x) + u), (u, y, t, x) ∈ U ×X3.

(According to our convention, if x /∈ dom H, F (u, y, t, x) = +∞.)
Observe that

F (0, 0, 0, ·) = f + iC + i−S ◦H.

Since S is a cone, a straightforward computation leads us to

(4.5) F ∗(u∗, y∗, t∗, x∗) =

 f∗(y∗) + i∗C(t∗) + (u∗ ◦H)∗(x∗ − y∗ − t∗),
if (u∗, y∗, t∗, x∗) ∈ S+ × (X∗)3,
+∞, otherwise

,

and so,
F ∗∗(0, 0, 0, ·) = f∗∗ + icoC + sup

u∗∈S+
(u∗ ◦H)∗∗.

By (4.1), F (0, 0, 0, ·) is proper. By (4.4) and (4.5) one has dom F ∗ 6= ∅. Thus the
equivalence between (c) and (d) follows directly from Theorem 1. �

Remark 4. Propositions 4 and 5 establish necessary and sufficient conditions for
Farkas lemma in asymptotic forms and they are new (even for convex data) to the
knowledge of the authors. This type of conditions for nonasymptotic form and for
the convex, lower semicontinuity systems without set constraint (i.e., where h ≡ 0,
C = X) was proposed recently in [19].

Corollary 1 ([5, Theorem 3]). Let f, h ∈ Γ(X), C be a closed convex set in X, S
a closed convex cone in Z, and H : X → Z a mapping. Assume that (4.1) holds
together with

(4.6) u∗ ◦H ∈ Γ(X), ∀u∗ ∈ S+.

Then the following statements (γ) and (δ) in Proposition 5 are again equivalent.
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Proof. By Lemma 1 one has

i−S ◦H = sup
u∗∈S+

u∗ ◦H.

By (4.6) we get i−S ◦ H ∈ Γ(X) (recall that H−1(−S) 6= ∅). As f ∈ Γ(X) and
C is closed and convex, condition (4.4) holds. To see this, we can simply take
u∗0 = t∗0 = 0, y∗0 ∈ dom f∗, x∗0 = y∗0 , and η0 = f∗(y∗0). It is easy to see that
the condition (c) in Proposition 5 holds, too. Consequently, the statement (d) in
Proposition 5 is true, and this is precisely what Corollary 1 says. �

Remark 5. When H is S−convex, i.e. when

H(λx + (1− λ)y)− λH(x)− (1− λ)H(y) ∈ −S, ∀x, y ∈ X,∀λ ∈ [0, 1],

the condition (4.6) is satisfied if H is lower semicontinuous in the following sense
(see [27]):

∀x ∈ X and ∀V ∈ N (H(x)) ∃W ∈ N (x) such that H(W ) ⊂ V + S+,

where N (y) denotes a neighborhoods basis of y.

5. Nonconvex optimization problems. Optimality and duality

We consider the nonconvex optimization problem

(P) minimize [f(x)− h(x)] s.t. x ∈ C and H(x) ∈ −S,

where f, h : X → R ∪ {+∞}, C ⊂ X, S is a cone in U , and H : dom H ⊂ X → U.

Proposition 6 (Optimality condition for (P)). Consider f : X → R ∪ {+∞},
C ⊂ X, H : dom H ⊂ X → U , and S a cone in U. Assume that (4.2) holds together
with

(5.1) (f + iC + i−S ◦H)∗∗ = sup
u∗∈S+

(f + iC + u∗ ◦H)∗∗.

Then for each h ∈ Γ(X) and any a ∈ C ∩H−1(−S)∩ dom f ∩ dom h, the following
statements are equivalent :

(a) a is a global optimal solution of (P).
(b) ∀x∗ ∈ dom h∗, there exists a net (u∗i , x

∗
i , εi)i∈I ⊂ S+ ×X∗ × R such that

(f + iC + u∗i ◦H)∗(x∗i ) ≤ h∗(x∗) + h(a)− f(a) + εi, ∀i ∈ I,

and
lim
i∈I

(x∗i , εi) = (x∗, 0+).

Proof. This is a straightforward consequence of Proposition 4. Indeed, a ∈ C ∩
H−1(−S) ∩ dom f ∩ dom h is a global optimal solution of (P) if and only if

x ∈ C, H(x) ∈ −S =⇒ f(x)− [h(x) + f(a)− h(a)] ≥ 0,

and this happens if and only if the statement (α) in Proposition 4 holds with h̃,
defined as h̃(x) := h(x) + f(a) − h(a), instead of h. The conclusion follows from
Proposition 4, taking into account the fact that h̃∗(x∗) = h∗(x∗)− f(a)+h(a). �

The following optimality condition is a consequence of Proposition 5. The proof
follows the same line as that of Proposition 6 and, therefore, it will be omitted.
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Proposition 7 (Optimality condition for (P)). Consider f : X → R ∪ {+∞},
C ⊂ X, S a cone in U , and H : dom H ⊂ X → U. Assume that (4.4) holds together
with

(5.2) (f + iC + i−S ◦H)∗∗ = f∗∗ + icoC + sup
u∗∈S+

(u∗ ◦H)∗∗.

Then for each h ∈ Γ(X) and a ∈ C ∩ H−1(−S) ∩ dom f ∩ dom h, the following
statements are equivalent :

(a) a is a global optimal solution of (P),
(b) ∀x∗ ∈ dom h∗, there exists a net (u∗i , y

∗
i , t∗i , x

∗
i , εi)i∈I ⊂ S+ × (X∗)3 × R

such that

f∗(y∗i ) + i∗C(t∗i ) + (u∗i ◦H)∗(x∗i − y∗i − t∗i ) ≤ h∗(x∗) + h(a)− f(a) + εi, ∀i ∈ I,

and
lim
i∈I

(x∗i , εi) = (x∗, 0+).

Corollary 2 ([5, Proposition 2]). Let f, h ∈ Γ(X), C be a closed convex set in X,
S a closed convex cone in U , and H : X → U a mapping. Assume additionally that
(4.6) holds. Then, for each a ∈ C ∩H−1(−S)∩ dom f ∩ dom h, the statements (a)
and (b) in Proposition 7 are equivalent.

Proof. By Lemma 1 and (4.6) one has

i−S ◦H = sup
u∗∈S+

u∗ ◦H ∈ Γ(X),

(recall that H−1(−S) 6= ∅ as a ∈ H−1(−S)). Since f ∈ Γ(X) and C is closed and
convex, conditions (4.4) and (5.2) in Proposition 7 hold (see the proof of Corollary
1). Therefore, statements (a) and (b) in Proposition 7 are equivalent. �

Proposition 8 (Duality theorem for (P)). Let f : X → R ∪ {+∞}, h ∈ Γ(X),
C ⊂ X, S ⊂ U , and H : dom H ⊂ X → U be as in Proposition 6 (i.e. satisfying
(4.2) and (5.1)). Moreover, assume that α :=inf(P) ∈ R. Then it holds:

(5.3) inf(P) = inf
x∗∈dom h∗

sup
(u∗i )i∈I⊂S+

(x∗i )i∈I⊂X∗

x∗i→x∗

[
h∗(x∗)− lim sup

i∈I
(f + iC + u∗i ◦H)∗(x∗i )

]
.

Proof. We begin with the inequality [≤]. Take x∗ ∈ dom h∗ and observe that

x ∈ C, H(x) ∈ −S ⇒ f(x)− [h(x) + α] ≥ 0.

By Proposition 4, with h̃(x) := h(x)+α playing the role of h, the previous inequality
implies the existence of a net (u∗i , x

∗
i , εi)i∈I ⊂ S+ ×X∗ × R such that

(f + iC + u∗i ◦H)∗(x∗i ) ≤ h∗(x∗)− α + εi, ∀i ∈ I,

and
lim
i∈I

(x∗i , εi) = (x∗, 0+),

which in fact entails

lim sup
i∈I

(f + iC + u∗i ◦H)∗(x∗i ) ≤ h∗(x∗)− α,
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and thus,

inf (P) ≤ sup
(u∗i ,x∗i )i∈I⊂S+×X∗

x∗
i
→x∗

{
h∗(x∗)− lim sup

i∈I
(f + iC + u∗i ◦H)∗(x∗i )

}
,

for all x∗ ∈ dom h∗, so the inequality [≤] in (5.3) holds.
We now prove the inequality [≥] in (5.3). If x∗ ∈ dom h∗, for any net (u∗i , x

∗
i )i∈I ⊂

S+ ×X∗ such that x∗i → x∗, one has

(f + iC + u∗i ◦H)∗(x∗i ) ≥ 〈x∗i , x〉 − f(x)− 〈u∗i ,H(x)〉 , ∀i ∈ I,∀x ∈ C ∩ dom H,

and since (u∗i )i∈I ⊂ S+,

(f + iC + u∗i ◦H)∗(x∗i ) ≥ 〈x∗i , x〉 − f(x), ∀i ∈ I,∀x ∈ C ∩H−1(−S).

It follows then that, ∀i ∈ I, ∀x ∈ C ∩H−1(−S),

h∗(x∗)− lim sup
i∈I

(f + iC + u∗i ◦H)∗(x∗i ) ≤ h∗(x∗)− 〈x∗, x〉+ f(x),

and so,

sup
(u∗i ,x∗i )i∈I⊂S+×X∗

x∗
i
→x∗

{
h∗(x∗)− lim sup

i∈I
(f + iC + u∗i ◦H)∗(x∗i )

}

≤ h∗(x∗)− 〈x∗, x〉+ f(x), ∀i ∈ I,∀x ∈ C ∩H−1(−S).

Now, since x∗ is an arbitrary element of dom h∗, we get by taking the infimum
on x∗ ∈ dom h∗ in the last inequality, that the right hand side of (5.3) is less or
equal to

f(x)− h∗∗(x) = f(x)− h(x), ∀x ∈ C ∩H−1(−S),
so that finally the inequality [≥] in (5.3) holds. �

Now we derive from (5.3) another duality formula for (P) in which we denote by

L(u∗, x) := f(x) + (u∗ ◦H)(x), (u∗, x) ∈ S+ ×X

the Lagrange function associated with f and H.

Corollary 3. With the same assumptions as in Proposition 8, one also has

inf(P) = inf
x∗∈dom h∗

sup
(u∗i )i∈I⊂S+

inf
x∈C

{
h∗(x∗)− 〈x∗, x〉+ lim inf

i∈I
L(u∗i , x)

}
.

Proof. By (5.3) one easily gets

inf(P) ≤ inf
x∗∈dom h∗

sup
(u∗i ,x∗i )i∈I⊂S+×X∗

x∗
i
→x∗

inf
x∈C

{
h∗(x∗) + lim inf

i∈I
(L(u∗i , x)− 〈x∗i , x〉)

}
.

Since x∗i → x∗, one has

lim inf
i∈I

(L(u∗i , x)− 〈x∗i , x〉) =
(

lim inf
i∈I

L(u∗i , x)
)
− 〈x∗, x〉 ,

and so,

inf(P) ≤ inf
x∗∈dom h∗

sup
(u∗i )i∈I⊂S+

inf
x∈C

{
h∗(x∗)− 〈x∗i , x〉+ lim inf

i∈I
L(u∗i , x)

}
=: β.



FUNCTIONAL INEQUALITIES WITHOUT CONVEXITY AND LOWER SEMICONTINUITY15

In order to prove the opposite inequality, we have to check that for every x ∈
C ∩H−1(−S)

f(x)− h(x) = f(x)− h∗∗(x)
= inf

x∗∈dom h∗
{f(x) + h∗(x∗)− 〈x∗, x〉}

≥ β,

and this happens if, for every x ∈ C ∩H−1(−S) and every x∗ ∈ dom h∗, we have

f(x) + h∗(x∗)− 〈x∗, x〉 ≥ β.

In fact we have

β ≤ sup
(u∗i )i∈I⊂S+

inf
x∈C

{
h∗(x∗)− 〈x∗, x〉+ lim inf

i∈I
L(u∗i , x)

}
≤ sup

(u∗i )i∈I⊂S+

{
h∗(x∗)− 〈x∗, x〉+ lim inf

i∈I
L(u∗i , x)

}
,

and since (u∗i , x)i∈I ⊂ S+ ×H−1(−S), one has

L(u∗i , x) = f(x) + (u∗i ◦H)(x) ≤ f(x),

so that we are done. �

Corollary 4 ([5, Proposition 7], [6]). Assume that f ∈ Γ(X), C is a closed convex
set in X, S a closed convex cone in U , H : X → U satisfies (4.6), and (dom f) ∩
C ∩H−1(−S) 6= ∅. Then

inf
x∈C∩H−1(−S)

f(x) = sup
(u∗i )i∈I⊂S+

inf
x∈C

lim inf
i∈I

L(u∗i , x)

= inf
x∈C

sup
(u∗i )i∈I⊂S+

lim inf
i∈I

L(u∗i , x).

Proof. Since L(u∗i , x) := f(x) + (u∗i ◦ H)(x) ≤ f(x), for any (u∗i , x)i∈I ⊂ S+ ×
H−1(−S), it is easy to see that

inf
x∈C

sup
(u∗i )i∈I⊂S+

lim inf
i∈I

L(u∗i , x) ≤ inf
x∈C∩H−1(−S)

f(x).

Observe also that

α := inf
x∈C∩H−1(−S)

f(x) ≤ sup
(u∗i )i∈I⊂S+

inf
x∈C

lim inf
i∈I

L(u∗i , x).

This is obvious if α = −∞. Note that the assumptions of the corollary imply that
(4.2) and (5.1) hold and so, if α ∈ R, the last inequality comes from Corollary 3
(applied with h = 0), and from the fact that that α < +∞.

On the other hand, since

sup
(u∗i )i∈I⊂S+

inf
x∈C

lim inf
i∈I

L(u∗i , x) ≤ inf
x∈C

sup
(u∗i )i∈I⊂S+

lim inf
i∈I

L(u∗i , x),

we are done. �

By taking H = 0 in (P) we get the problem

(P1) minimize [f(x)− h(x)] s.t. x ∈ C.

So, it is not surprising that the previous results cover, as a special case, the well-
known duality for DC problems [31] (see, also, [28] and [32]). For instance, from
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Corollary 3 with H = 0 and C = X we straightforwardly get that, for any h ∈ Γ(X)
and any f : X → R ∪ {+∞} with f∗ proper, one has

(5.4) inf
x∈X

{f(x)− h(x)} = inf
x∗∈X∗

{h∗(x∗)− f∗(x∗)},

which still holds when f∗ is not proper.
According to Proposition 7 we provide next a characterization of the optimal

solution set for the problem (P1).

Proposition 9. Let h ∈ Γ(X), C ⊂ X, and f : X → R ∪ {+∞} be such that f∗

proper and

(5.5) (f + iC)∗∗ = f∗∗ + icoC .

Then, for any a ∈ C ∩ dom f ∩ dom h, the following statements are equivalent :
(a) a is a global minimum of (P1),
(b) ∀x∗ ∈ dom h∗, there exists a net (x∗i , y

∗
i , εi)i∈I ⊂ (X∗)2 × R such that

f∗(y∗i ) + i∗C(x∗i − y∗i ) + f(a) ≤ h∗(x∗) + h(a) + εi, ∀i ∈ I,

and
(x∗i , εi) → (x∗, 0+).

Proof. It follows from Proposition 7, by taking H ≡ 0. �

Remark 6. Condition (5.5) is in particular satisfied in the following two important
cases:

(i) f ∈ Γ(X), C is closed and convex,
(ii) C = X.

Relatively to the case (ii) above we have:

Proposition 10. Let h ∈ Γ(X) and f : X → R ∪ {+∞} with f∗ is proper. Then,
for any a ∈ C ∩ dom f ∩ dom h, the following statements are equivalent:

(a) a is a global minimum of f − h on X,
(b) ∀x∗ ∈ dom h∗,

f∗(x∗) + f(a) ≤ h∗(x∗) + h(a),

(c) ∀x∗ ∈ dom h∗, there exists a net (x∗i , εi)i∈I ⊂ X∗ × R such that

f∗(x∗i ) + f(a) ≤ h∗(x∗) + h(a) + εi, ∀i ∈ I,

and
(x∗i , εi) → (x∗, 0+).

Proof. [(a) ⇒ (b)] Let x∗ ∈ dom h∗. For any x ∈ X, it holds

h∗(x∗) + h(a) ≥ 〈x∗, x〉 − h(x) + h(a) ≥ 〈x∗, x〉 − f(x) + f(a)

and we get (b) by taking the supremum over x ∈ X.
[(b) ⇒ (c)] Take x∗i = x∗, εi = 0, for all i ∈ I (an arbitrary directed set).
[(c) ⇒ (a)] Apply Proposition 9 with C = X. �

Remark 7. The equivalence of (a) and (b) also follows from (5.4).
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